Compression is widely exploited in retrieval systems, such as search engines and text databases, to lower both retrieval costs and system latency. In particular, compression of repositories can reduce storage requirements and fetch times, while improving caching. One of the most effective techniques is relative Lempel-Ziv, RLZ, in which a RAM-resident dictionary encodes the collection. With RLZ, a specified document can be decoded independently and extremely fast, while maintaining a high compression ratio. For terabytescale collections, this dictionary need only be a fraction of a per cent of the original data size. However, as originally described, RLZ uses a static dictionary, against which encoding of new data may be inefficient. An obvious alternative is to generate a new dictionary solely from the new data. However, this approach may not be scalable because the combined RAM-resident dictionary will grow in proportion to the collection.In this paper, we describe effective techniques for extending the original dictionary to manage new data. With these techniques, a new auxiliary dictionary, relatively limited in size, is created by interrogating the original dictionary with the new data. Then, to compress this new data, we combine the auxiliary dictionary with some parts of the original dictionary (the latter in fact encoded as pointers into that original dictionary) to form a second dictionary. Our results show that excellent compression is available with only small auxiliary dictionaries, so that RLZ can feasibly transmit and store large, growing collections.