2024
DOI: 10.1177/03611981241235197
|View full text |Cite
|
Sign up to set email alerts
|

Data-Driven Approach to State of Good Repair: Predicting Rolling Stock Service Life with Machine Learning for State of Good Repair Backlog Reduction and Long-Range Replacement Cost Estimation in Small Urban and Rural Transit Systems

Dilip Mistry,
Jill Hough

Abstract: This paper presents a data-driven approach to address the state of good repair (SGR) in small urban and rural transit systems in the U.S. by predicting the service life of rolling stock vehicles. Achieving and maintaining public transportation rolling stock in SGR is crucial to providing safe and reliable services to riders, particularly for transit agencies utilizing federal grants that mandate asset maintenance at a full level of performance. In this context, an intelligent predictive model is proposed to an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?