2024
DOI: 10.1002/acs.3793
|View full text |Cite
|
Sign up to set email alerts
|

Data‐driven disturbance compensation control for discrete‐time systems based on reinforcement learning

Lanyue Li,
Jinna Li,
Jiangtao Cao

Abstract: SummaryIn this article, a self‐learning disturbance compensation control method is developed, which enables the unknown discrete‐time (DT) systems to achieve performance optimization in the presence of disturbances. Different from traditional model‐based and data‐driven state feedback control methods, the developed off‐policy Q‐learning algorithm updates the state feedback controller parameters and the compensator parameters by actively interacting with the unknown environment, thus the approximately optimal t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?