Data‐driven disturbance compensation control for discrete‐time systems based on reinforcement learning
Lanyue Li,
Jinna Li,
Jiangtao Cao
Abstract:SummaryIn this article, a self‐learning disturbance compensation control method is developed, which enables the unknown discrete‐time (DT) systems to achieve performance optimization in the presence of disturbances. Different from traditional model‐based and data‐driven state feedback control methods, the developed off‐policy Q‐learning algorithm updates the state feedback controller parameters and the compensator parameters by actively interacting with the unknown environment, thus the approximately optimal t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.