All Days 2023
DOI: 10.2118/217363-ms
|View full text |Cite
|
Sign up to set email alerts
|

Data-Driven Facies Prediction Using Surface Drilling Parameters and Formation Elastic Properties – A Machine Learning Approach

Abstract: Unconventional reservoirs comprise of various heterogeneous productive and non-productive units which can be correlated with facies. To focus a target zone during drilling, it is essential to understand and identify unique zones in real-time. However, real-time LWD/MWD tools provide formation properties data with depth and time delay. Machine learning (ML) can help in predicting productive/non-productive facies/rock types without any time and depth delay enabling early decisions resulting in optimization of ri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 11 publications
0
0
0
Order By: Relevance