2024
DOI: 10.1088/2632-2153/ad2629
|View full text |Cite
|
Sign up to set email alerts
|

Data-driven Lie point symmetry detection for continuous dynamical systems

Alex Gabel,
Rick Quax,
Efstratios Gavves

Abstract: Symmetry detection, the task of discovering the underlying symmetries of a given dataset, has been gaining popularity in the machine learning community, particularly in science and engineering applications. Most previous works focus on detecting "canonical" symmetries such as translation, scaling, and rotation, and cast the task as a modeling problem involving complex inductive biases and architecture design of neural networks. We challenge these assumptions and propose that instead of constructing biases, we … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?