2021
DOI: 10.2514/1.i010978
|View full text |Cite
|
Sign up to set email alerts
|

Data-Driven Machine Learning Model for Aircraft Icing Severity Evaluation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 15 publications
0
8
0
Order By: Relevance
“…As described in the previous section, the aircraft icing process is a complex interaction of multiple variables and explicitly modeling the icing formation process often requires computationally expensive and/or cumbersome treatments to calculate the ice displacement and accretion along the wing, such as remeshing [22]. Data-driven methods can help alleviate this constraint by applying regression analysis and machine learning models to predict the aircraft icing based on icing data collected in experimental campaigns and/or numerical simulations [24]. Within the domain of aircraft icing, ML is applied in two main areas: ice shape prediction and icing severity evaluation.…”
Section: Data-driven Modeling For Aircraft Icingmentioning
confidence: 99%
See 4 more Smart Citations
“…As described in the previous section, the aircraft icing process is a complex interaction of multiple variables and explicitly modeling the icing formation process often requires computationally expensive and/or cumbersome treatments to calculate the ice displacement and accretion along the wing, such as remeshing [22]. Data-driven methods can help alleviate this constraint by applying regression analysis and machine learning models to predict the aircraft icing based on icing data collected in experimental campaigns and/or numerical simulations [24]. Within the domain of aircraft icing, ML is applied in two main areas: ice shape prediction and icing severity evaluation.…”
Section: Data-driven Modeling For Aircraft Icingmentioning
confidence: 99%
“…Since the ice accretion process shows strong nonlinearity, linear algorithms such as linear regression [44] and logistic regression [45] are not suitable [24]. Common nonlinear algorithms include the classification and regression trees (CART) [46], Naïve Bayes (NB) [47], k-Nearest Neighbors (KNN) [48] and Support Vector Machines (SVM) [49].…”
Section: Machine Learningmentioning
confidence: 99%
See 3 more Smart Citations