“…Various machine learning approaches are used to infer regulatory networks. They have multiple levels of model complexity, ranging from the earliest Boolean network and network module approaches (Shmulevich et al, 2002;Lähdesmäki et al, 2003;Segal et al, 2003;Pe'er et al, 2001) to approaches that explicitly model dynamics, TF interactions and transcription factor post-transcriptional activity (Honkela et al, 2010;Äijö et al, 2013;Intosalmi et al, 2016;Studham et al, 2014). Advancements in genomics and transcriptomics technologies spurred the development of more complex methods, involving Mutual Information (Margolin et al, 2006a,b;Faith et al, 2007;Butte & Kohane, 2000), correlation (Butte & Kohane, 2000), ANOVA (Küffner et al, 2012), conditional entropy (Karlebach & Shamir, 2012), Random Forest (Huynh-Thu et al, 2010;Petralia et al, 2015), Bayesian causality (Mani & Cooper, 2004;Mani et al, 2012;Friedman et al, 2000), expression module clustering (Reiss et al, , 2015, and constrained regression of biophysical models Greenfield et al, 2013;Arrieta-Ortiz et al, 2015).…”