2022
DOI: 10.48550/arxiv.2203.16423
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Data-Driven Model Predictive Control for Linear Time-Periodic Systems

Abstract: We consider the problem of data-driven predictive control for an unknown discrete-time linear time-periodic (LTP) system of known period. Our proposed strategy generalizes both Data-enabled Predictive Control (DeePC) and Subspace Predictive Control (SPC), which are established data-driven control techniques for linear time-invariant (LTI) systems. The approach is supported by an extensive theoretical development of behavioral systems theory for LTP systems, culminating in a generalization of the fundamental le… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?