2018
DOI: 10.1007/s00332-017-9437-7
|View full text |Cite
|
Sign up to set email alerts
|

Data-Driven Model Reduction and Transfer Operator Approximation

Abstract: In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis (TICA), dynamic mode decompos… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
252
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 277 publications
(254 citation statements)
references
References 57 publications
0
252
0
2
Order By: Relevance
“…Эта линеаризация основана на том, что оператор Купмана (линейный) является сопряженным оператором Перрона-Фробениуса [15][16][17][18][19].…”
Section: связь оператора купмана с оператором перрона-фробениусаunclassified
See 1 more Smart Citation
“…Эта линеаризация основана на том, что оператор Купмана (линейный) является сопряженным оператором Перрона-Фробениуса [15][16][17][18][19].…”
Section: связь оператора купмана с оператором перрона-фробениусаunclassified
“…Оператор Купмана тесно связан (сопряжен) с оператором Перрона-Фробениуса (пропагатором обобщенного уравнения Лиувилля), описывающим линейную динамику плотности вероятности [14][15][16][17][18][19].…”
Section: Introductionunclassified
“…for initial condition (t = 0, x) = 0 (x). The P term is the continuous-time Perron-Frobenius operator 226 [19,20]. This operator is known by many names depending on the underlying dynamical system for the state 227 evolution x(t) ∈ M for t ∈ (t 1 , t R ).…”
Section: /22mentioning
confidence: 99%
“…This situation results in a combinatorial explosion 18 of model variants that cannot be exhaustively evaluated [4,5]. Alternative approaches are agnostic with 19 regards to parametric form and model structure and use a probabilistically-motivated rule to map between 20 distributions, e.g., one optimal transport method maps neighbours at one time point to the nearest neighbour 21 at the next time point [6]. However, such generic approach are rather extreme in their agnosticism and 22 abandon reasonable assumptions on the dynamics of cellular systems, e.g., that cells can be modelled as an 23 autonomous dynamical systems in continuous time, such as a Markov chain, where the cell's current state 24 infers its likely future state independent of the current time within the experiment.…”
mentioning
confidence: 99%
See 1 more Smart Citation