This paper proposes a new efficient two-step method for parametrizing control-oriented zero-dimensional physical polymer electrolyte membrane fuel cell (PEMFC) models with measured stack data. Parametrizations of these models are computationally intensive due to the numerous unknown parameters and the typically nonlinear, stiff model properties. This work reduces an existing model to decrease its stiffness for accelerated numerical simulations. Subdividing the parametrization into two consecutive subproblems (thermodynamic and electrochemical ones) reduces the solution space significantly. A parameter sensitivity analysis further reduces each sub-solution space by excluding non-significant parameters. The method results in an efficient parametrization process. The two-step approach minimizes each sub-solution space’s dimension by two-thirds, respectively three-fourths, compared to the global one. An achieved R2 value between simulation and measurement of 91% on average provides the required accuracy for control-oriented models.