Dengue is a viral infection disease transmitted to people through the bite of specific mosquito species living in a tropical zone. According to the World Health Organization, dengue has been listed among the top-ten diseases for 2019 as it makes 3.9 billion people in 128 countries be at risk of infection. One major cause of substantial dengue widespread is the globally warm climate that accelerates rapid growth of mosquito vectors. In this research, we aim to build data-driven models to predict dengue cases using satellite index data to represent temperature, humidity, and greenness over the surface area of Bangkok, which is our target area of dengue prediction because of its high infection cases. Oceanic Niño Index is also used as a predictor variable to represent climate variability. The modeling methods employ seven algorithms from two broad schemes of the machine learning field. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are algorithms from the subfield of computational intelligence, whereas multiple linear regression (MLR), generalized linear model (GLM), support vector regression (SVR), classification and regression tree (CART), and chi-squared automatic interaction detection (CHAID) are from the statistical learning subfield. Performances of these algorithms are evaluated on the same set of out-of-sample data. The results are that ANFIS is the best model for predicting dengue outbreak in the capital city of Thailand.