Turbulent flow over permeable interfaces is omnipresent featuring complex flow topology. In this work, a data-driven, end-to-end machine learning model has been developed to model the turbulent flow in porous media. For the same, we have derived a non-linear reduced order model (ROM) with a deep convolution autoencoder. This model can reduce highly resolved spatial dimensions, which is a prerequisite for direct numerical simulation, by 99%. A downstream recurrent neural network has been trained to capture the temporal trend of reduced modes; thus, it is able to provide future evolution of modes. We further evaluate the trained model's capability on a newer dataset with a different porosity. In such cases, fine-tuning could reduce the efforts (up to two-order of magnitude) to train a model with limited dataset (10%) and knowledge and still show a good agreement on the mean velocity profile. Especially, the fine-tuned model shows a better agreement in the porous domain than the channel and interface areas indicating the topological feature is less challenging for training than the multi-scale nature of the turbulent flows. Leveraging the current model, we find that even quick fine-tuning achieves an impressive order-of-magnitude reduction in training time by approximately O(102) and still results in effective flow predictions. This promising discovery encourages the fast development of a substantial amount of data-driven models tailored for various types of porous media. The diminished training time substantially lowers the computational cost when dealing with changing porous topologies, making it feasible to systematically explore interface engineering with different types of porous media.