Data‐driven quality prediction in injection molding: An autoencoder and machine learning approach
Kun‐Cheng Ke,
Jui‐Chih Wang,
Shih‐Chih Nian
Abstract:In the injection molding process, the pressure within the mold cavity is crucial to the quality of the final product. Due to the inability to directly observe the process, sensor technology is required to acquire data. Traditionally, experts interpret and encode pressure curves, but this method has limitations. This study proposes an innovative pressure curve encoding technique to overcome these limitations and achieve automation to obtain more comprehensive pressure information. The study employs mold flow an… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.