The aim of this paper is to report on the state of the art of the literature on the most recent challenges in the energy domain that can be addressed through the use of quantum computing technology. More in detail, to the best of the authors’ knowledge, the scope of the literature review considered in this paper is specifically limited to forecasting, grid management (namely, scheduling, dispatching, stability, and reliability), battery production, solar cell production, green hydrogen and ammonia production, and carbon capture. These challenges have been identified as the most relevant business needs currently expressed by energy companies on their path towards a net-zero economy. A critical discussion of the most relevant methodological approaches and experimental setups is provided, together with an overview of future research directions. Overall, the key finding of the paper, based on the proposed literature review, is twofold: namely, (1) quantum computing has the potential to trigger significant transformation in the energy domain by drastically reducing CO2 emissions, especially those relative to battery production, solar cell production, green hydrogen and ammonia production, as well as point-source and direct-air carbon capture technology; and (2) quantum computing offers enhanced optimization capability relative to relevant challenges that concern forecasting solar and wind resources, as well as managing power demand, facility allocation, and ensuring reliability and stability in power grids.