When milling complex parts or curved surfaces, we encounter several problems that must be addressed in the production process. Various factors affect the quality and accuracy of production. The main objective of this paper was to analyse the size of the effective tool diameter when machining a shaped surface concerning the selected position, namely at the perpendicular position of the tool. At the same time, the distribution of the engagement area on the tool surface was evaluated by extracting the area content and volume data at the point of contact. This study highlights the importance of the choice of finishing strategy in a CAM system. The results showed that the tool engagement size corresponded to the extracted data describing the area and volume for each tool position with regards to the curvature of the surface. The negative deviations obtained by the scanning method were due to machining near the tool centre, which was affected by the changing effective tool diameter.