Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20-50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20-50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.