Traditionally, the one-to-one interaction between heterogeneous software has become the most commonly used method for multi-disciplinary collaboration in building projects, resulting in numerous data interfaces, different data formats, and inefficient collaboration. As the prevalence of Building Information Modeling (BIM) increases in building projects, it is expected that the exchange of Industry Foundation Classes (IFC)-based data can smoothly take place between heterogeneous BIM software. However, interoperability issues frequently occur during bidirectional data exchanges using IFC. Hence, a data interoperability experiment, including architectural, structural and MEP models from a practical project, was conducted to analyze these issues in the process of data import and re-export between heterogeneous software. According to the results, the fundamental causes of interoperability issues can be concluded as follows: (a) software tools cannot well interpret several objects belonging to other disciplines due to the difference in domain knowledge; (b) software tools have diverse methods to represent the same geometry, properties and relations, leading to inconsistent model data. Furthermore, this paper presents a suggested method for improving the existing bidirectional data sharing and exchange: BIM software tools export models using IFC format, and these IFC models are imported into a common IFC-based BIM platform for data interoperability.