2024
DOI: 10.56553/popets-2024-0024
|View full text |Cite
|
Sign up to set email alerts
|

Data Isotopes for Data Provenance in DNNs

Emily Wenger,
Xiuyu Li,
Ben Y. Zhao
et al.

Abstract: Today, creators of data-hungry deep neural networks (DNNs) scour the Internet for training fodder, leaving users with little control over or knowledge of when their data, and in particular their images, are used to train models. To empower users to counteract unwanted use of their images, we design, implement and evaluate a practical system that enables users to detect if their data was used to train a DNN model for image classification. We show how users can create special images we call isotopes, which intr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 53 publications
0
0
0
Order By: Relevance