2023
DOI: 10.3390/s23218661
|View full text |Cite
|
Sign up to set email alerts
|

Data Mining and Fusion Framework for In-Home Monitoring Applications

Idongesit Ekerete,
Matias Garcia-Constantino,
Christopher Nugent
et al.

Abstract: Sensor Data Fusion (SDT) algorithms and models have been widely used in diverse applications. One of the main challenges of SDT includes how to deal with heterogeneous and complex datasets with different formats. The present work utilised both homogenous and heterogeneous datasets to propose a novel SDT framework. It compares data mining-based fusion software packages such as RapidMiner Studio, Anaconda, Weka, and Orange, and proposes a data fusion framework suitable for in-home applications. A total of 574 pr… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 66 publications
0
0
0
Order By: Relevance