1999
DOI: 10.1007/3-540-48412-4_36
|View full text |Cite
|
Sign up to set email alerts
|

Data Mining for the Detection of Turning Points in Financial Time Series

Abstract: Abstract. One of the most challenging problems in econometrics is the prediction of turning points in financial time series. We compare ARMA-and Vector-Autoregressive (VAR-) models by examining their abilities to predict turning points in monthly time series. An approach proposed by Wecker[1] and enhanced by Kling[2] forms the basis to explicitly incorporate uncertainty in the forecasts by producing probabilistic statements for turning points. To allow for possible structural change within the time period und… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2003
2003
2015
2015

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 7 publications
0
1
0
1
Order By: Relevance
“…É baseado no modelo financeiro de ponto de virada para séries históricas [18] [19], o SELCASIF propõe a composição de um portfólio baseado no estado da economia e no perfil de investidor e não faz predição da tendência.…”
Section: Trabalhos Correlatosunclassified
“…É baseado no modelo financeiro de ponto de virada para séries históricas [18] [19], o SELCASIF propõe a composição de um portfólio baseado no estado da economia e no perfil de investidor e não faz predição da tendência.…”
Section: Trabalhos Correlatosunclassified
“…Markov-switching (MS) model [2], Data Mining approach [3], and statistical surveillance [4] are frequently reported methods in this topic. Our method contributes to the existing literature on detecting turning points by the time when estimated external force exhibits significant peaks in its frequency contents.…”
Section: Introductionmentioning
confidence: 99%