Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.transition metals | MntH | divalent metal transporter DMT1 | hard-soft acid-base theory | ion selectivity filters A ll organisms require transition metal ions as cofactors in proteins that perform a variety of essential cellular tasks. Through evolution, organisms have developed mechanisms to acquire, transport, and safely store essential metals such as manganese, iron, cobalt, and zinc. The natural resistance-associated macrophage protein (Nramp) family of metal transporters represents a common transition metal acquisition strategy conserved across all kingdoms of life (1). The first discovered mammalian Nramp (Nramp1) is expressed in phagosomal membranes and likely extracts essential metals to help kill engulfed pathogens (2, 3). Mammals use Nramp2, an essential gene also called DMT1, to absorb dietary iron into the enterocytes that line the small intestine (4) and to extract iron from transferrin-containing endosomes in all tissues. Bacteria express their own Nramp homologs, which they typically use to scavenge manganese and other first row divalent transition metals (5, 6). Last, most plants have several Nramp homologs that take up iron and manganese, the essential cofactor in photosystem II, from the soil or vacuolar stores (7,8).Nramps are generally thought to function as metal-proton symporters (1) and are able to bind and/or transport a wide range of divalent transition metal substrates, including the biologically useful metals Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ , as well as the toxic heavy metals Cd 2+ , Pb 2+ , and Hg 2+ (4, 9-13). Nramps do discriminate against the divalent alkaline earth metal ions Mg 2+ and Ca 2+ (9, 14), which are typically several orders of magnitude mor...