Bank merupakan perusahaan yang memiliki data yang besar yang tersimpan di dalam database dan diolah menghasilkan sebuah informasi yang saling berkaitan tentang nasabah. Bank, harus memiliki ide dan terobosan baru guna mengetahui kendala pada nasabah telemarketing yang ingin melakukan deposito pada Bank tersebut, agar Bank terhindar dari ancaman krisis keuangan. Penelitian ini menguji keberhasilan Bank telemarketing dengan cara melakukan klasifikasi keputusan nasabah dengan menerapkan data mining. Metode yang di gunakan algoritma Classification and Regression Trees (CART) dan naive bayes menggunakan dataset diambil dari University of California Irvine (UCI) Repository Learning. Adapun metode validasi dan evaluasi yang digunakan yaitu 10-cross validation dan confusion matrix. Hasil akurasi pada algoritma CART yaitu 89.51% dengan nilai precision 87%, Recall 89% dan F-Measure 88% dan pada algoritma naive bayes mendapatkan nilai akurasi sebesar 86.88% dengan nilai precision 87%, Recall 86% dan F-Measure 87%. Dari hasil tersebut dapat disimpulkan bahwa algoritma CART lebih baik dalam memprediksi keputusan nasabah telemarketing tepat dalam penawaran deposito.