Synchrophasor systems, providing low-latency, high-precision, and time-synchronized measurements to enhance power grid performances, are deployed globally. However, the synchrophasor system as a physical network, involves communication constraints and data quality issues, which will impact or even disable certain synchrophasor applications. This work investigates the data quality issue for synchrophasor applications. In Part I, the standards of synchrophasor systems and the classifications and data quality requirements of synchrophasor applications are reviewed. Also, the actual events of synchronization signal accuracy, synchrophasor data loss, and latency are counted and analyzed. The review and statistics are expected to provide an overall picture of data accuracy, loss, and latency issues for synchrophasor applications.