The reduction of energy consumption and the successful delivery of data are important for a wireless body sensor network (WBSN). Many studies have been performed to improve energy efficiency, but most of them have not focused on the biosensor nodes in the WBSN bottleneck zone. Energy consumption is a critical issue in WBSNs, as the nodes that are placed next to the sink node consume more energy. All biomedical packets are aggregated through these nodes forming a bottleneck zone. This study proposes a novel mathematical model for body area network topology to explain the deployment and connection between biosensor nodes, simple relay nodes, network coding (NC) relay nodes and the sink node. Therefore, this study is dedicated to research both the energy saving and delivery of data if there is a failure in one of the links of the transmission, which relates to the proposed random linear NC model in the WBSN. Using a novel mathematical model for the WBSN, it is apparent that energy consumption is reduced and data delivery achieved with the proposed mechanism. This study details the stages of the research work.