With the popularization of mobile terminals and the rapid development of mobile communication technology, many PC-based services have placed high demands on data processing and storage functions. Cloud laptops that transfer data processing tasks to the cloud cannot meet the needs of users due to low latency and high-quality services. In view of this, some researchers have proposed the concept of mobile edge computing. Mobile edge computing (MEC) is based on the 5G evolution architecture. By deploying multiple service servers on the base station side near the edge of the user’s mobile core network, it provides nearby computing and processing services for user business. This article is aimed at studying the use of caching and MEC processing functions to design an effective caching and distribution mechanism across the network edge and apply it to civil aviation express marketing. This paper proposes to focus on mobile edge computing technology, combining it with data warehouse technology, clustering algorithm, and other methods to build an experimental model of MEC-based caching mechanism applied to civil aviation express marketing. The experimental results in this paper show that when the cache space and the number of service contents are constant, the LECC mechanism among the five cache mechanisms is more effective than LENC, LRU, and RR in cache hit rate, average content transmission delay, and transmission overhead. For example, with the same cache space, ATC under the LECC mechanism is about 4%~9%, 8%~13%, and 18%~22% lower than that of LENC, LRU, and RR, respectively.