As judged by tandem mass spectrometry blood spot screening, the incidence of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is 1:14 600 (CI 95%: 1:13 500-1:15 900) in almost 8.2 million newborns worldwide and is 2- to-3 fold higher than that identified in the same populations after clinical presentation. In mass-screened newborn populations, the 985A>G (K329E) mutation accounts for 54-90% of disease alleles, with homozygotes representing about 47-80% of MCAD deficiency cases. Worldwide, octanoylcarnitine levels are an effective primary screen for MCAD deficiency in newborns. Newborns homozygous for the 985A < G mutation have higher octanoylcarnitine levels than do those compound heterozygous for 985A < G and those with other genotypes. Time of sampling after birth also significantly affects octanoylcarnitine levels in MCAD-deficient newborns. Tandem mass spectrometry newborn blood spot screening for MCAD deficiency is accurate and effective, reduces morbidity and mortality, and merits expansion to other populations worldwide.