Advancements in data analytics techniques have enabled complex, disparate datasets to be leveraged for alloy design. Identifying outliers in a dataset can reduce noise, identify erroneous and/or anomalous records, prevent overfitting, and improve model assessment and optimization. In this work, two alloy datasets (9-12% Cr ferritic-martensitic steels, and austenitic stainless steels) have been assessed for outliers using unsupervised techniques and supplemented with domain knowledge. Principal component analysis and k-means clustering were applied to the data, and points were assessed as outliers based on their distance from other points in the cluster and from other points in the dataset. The outlier characteristics were investigated to determine both cluster-specific and overall trends in the properties of the outlier points. The approach demonstrated here is extensible to other alloy datasets for outlier identification and evaluation to improve the reliability of machine learning and modeling predictions for advanced alloy design.