The paper discusses a data science competition centered around the development of an anomaly detection system for IoT devices. The competition utilized a unique environment that allowed for the operation and monitoring of real IoT devices, including scheduling of attacks on these devices. The environment was used to collect the data, which included both normal and attack-induced behavior of IoT devices. The paper presents the background of the competition, the top models submitted, and the competition results. The paper also includes a discussion about restrictions related to the use of synthetic attack data as input for constructing anomaly detection systems.