Most machine learning algorithms only have a good recognition rate on balanced datasets. However, in the field of malicious traffic identification, benign traffic on the network is far greater than malicious traffic, and the network traffic dataset is imbalanced, which makes the algorithm have a low identification rate for small categories of malicious traffic samples. This paper presents a traffic sample synthesizing model named Conditional Tabular Traffic Generative Adversarial Network (CTTGAN), which uses a Conditional Tabular Generative Adversarial Network (CTGAN) algorithm to expand the small category traffic samples and balance the dataset in order to improve the malicious traffic identification rate. The CTTGAN model expands and recognizes feature data, which meets the requirements of a machine learning algorithm for training and prediction data. The contributions of this paper are as follows: first, the small category samples are expanded and the traffic dataset is balanced; second, the storage cost and computational complexity are reduced compared to models using image data; third, discrete variables and continuous variables in traffic feature data are processed at the same time, and the data distribution is described well. The experimental results show that the recognition rate of the expanded samples is more than 0.99 in MLP, KNN and SVM algorithms. In addition, the recognition rate of the proposed CTTGAN model is better than the oversampling and undersampling schemes.