“…(Füredi-Hajnal [14]) If P is contained in P , where P, P are 0-1 matrices, then Ex(P , n) ≤ Ex(P, n). [14]) Let P ∈ {0, 1} k×l be a forbidden matrix where P (i, l − 1) = 1 (i.e., a 1 in the last column of P ) and let P ∈ {0, 1} k×(l+1) be identical to P in the first l columns and where [28]) Let P ∈ {0, 1} k×l be a forbidden matrix with a single 1 in the last column and let P ∈ {0, 1} k×(l−1) be P with the last column removed. Then Ex(P, n) = O(n + Ex(P , n) log n) and if Ex(P , n) = n 1+Ω(1) then Ex(P, n) = Θ(Ex(P , n))…”