2021
DOI: 10.32920/ryerson.14649129.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Day-Ahead Electricity Price And Spike Forecasting Using Machine Learning Techniques

Abstract: Various machine learning-based methods and techniques are developed for forecasting day-ahead electricity prices and spikes in deregulated electricity markets. The wholesale electricity market in the Province of Ontario, Canada, which is one of the most volatile electricity markets in the world, is utilized as the case market to test and apply the methods developed. Factors affecting electricity prices and spikes are identified by using literature review, correlation tests, and data mining techniques. Forecast… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?