Spread-F (SF) is one of the most important types of the ionospheric irregularities as it causes ionospheric scintillation which can severely affect the performance and reliability of communication, navigation, and radar systems. The ionosonde provides the most effective and economical way to study the ionosphere and SF. However, the manual identification of SF from an ionogram is boring and hard work. To automatically identify SF on the ionogram and extend the study of SF into the middle and low latitudes of East Asia, this paper presents a statistical analysis of SF in this region, based on the naïve Bayesian classifier. The results showed that the accuracy of automatic identification reached up to 97% on both the validation datasets and test datasets composed of Mohe, I-Cheon, Jeju, Wuhan, and Sanya ionograms, suggesting that it is a promising way to automatically identify SF on ionograms. Based on the classification results, the statistical analysis shows that SF has a complicated morphology in the middle and low latitudes of East Asia. Specifically, there is a peak of occurrence of SF in the summer in I-Cheon, Jeju, Sanya, and Wuhan; however, the Mohe station has the highest occurrence rate of SF in December. The different seasonal variations of SF might be due to the different geographic local conditions, such as the inland-coastal differences and formation mechanism differences at these latitudes. Moreover, SF occurs more easily in the post-midnight hours when compared with the pre-midnight period in these stations, which is consistent with the previous results. Furthermore, this paper extracts the frequency SF (FSF) index and range SF (RSF) index to characterize the features of SF. The results shows that the most intense FSF/RSF appeared in the height range of 220–300 km/1–7 MHz in these stations, although there are different magnitude extensions on different season in these regions. In particular, strong spread-F (SSF) reached its maximum at the equinox at Sanya, confirming the frequent SSF occurrence at the equinox at the equator and low latitudes. These results would be helpful for understanding the characteristics of SF in East Asia.