DB-CBIL: A DistilBert-Based Transformer Hybrid Model Using CNN and BiLSTM for Software Vulnerability Detection
Ahmed Bahaa,
Aya El-Rahman Kamal,
Hanan Fahmy
et al.
Abstract:Software vulnerabilities are among the significant causes of security breaches. Vulnerabilities can severely compromise software security if exploited by malicious attacks and may result in catastrophic losses. Hence, Automatic vulnerability detection methods promise to mitigate attack risks and safeguard software security. This paper introduces a novel model for automatic vulnerability detection of source code vulnerabilities dubbed DB-CBIL using a hybrid deep learning model based on Distilled Bidirectional E… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.