2019
DOI: 10.1504/ijhpcn.2019.10020624
|View full text |Cite
|
Sign up to set email alerts
|

DBSCAN-PSM: an improvement method of DBSCAN algorithm on Spark

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
1
0
3

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 0 publications
0
1
0
3
Order By: Relevance
“…Te algorithm uses R * -tree structure to merge the results of local clustering and improve the efciency of obtaining global clusters. In addition, Jing et al [23] applied a new data partitioning and merging method to implement the DBSCAN algorithm for partitioning and clustering based on the Spark framework. Te algorithm introduces KD trees in the data partitioning phase and reduces the number of visits to the dataset by using neighbor queries.…”
Section: State Of the Artmentioning
confidence: 99%
“…Te algorithm uses R * -tree structure to merge the results of local clustering and improve the efciency of obtaining global clusters. In addition, Jing et al [23] applied a new data partitioning and merging method to implement the DBSCAN algorithm for partitioning and clustering based on the Spark framework. Te algorithm introduces KD trees in the data partitioning phase and reduces the number of visits to the dataset by using neighbor queries.…”
Section: State Of the Artmentioning
confidence: 99%
“…Розглянемо метод кластеризації DBSCAN (Density-Based Spatial Clustering of Noisy Applications) [5,6]…”
Section: вступunclassified
“…Кластеризація та оброблення даних IoT. У дослідженнях [5,6] висвітлюється важливість алгоритмів кластеризації даних IoT для подальшого аналізу та оброблення. Проте існує проблема в обранні найбільш ефективного алгоритму для конкретних завдань.…”
Section: аналіз літературиunclassified
See 1 more Smart Citation