As MEMS technology develops it is becoming better understood that MEMS designers must account for the large uncertainties characteristic of the relevant manufacturing processes. Uncertainty quantification tasks the designer with evaluating many different possible outcomes from the manufacturing process which creates a demand for models that are accurate and comprehensive, yet fast to evaluate. This work presents a comprehensive reduced-order model of electrostatically actuated switches incorporating a range of effects that are typically included only in FE modeling codes. Specifically, the model accounts for variable electrode geometry, stretching of centerline or large displacement effects, fringing field, squeeze film and rarefied gas damping, and allows for elastic contact with the dielectric substrate. Individual compact models for each of these effects are taken from literature and included in the model for the system. The dielectric substrate is modeled as an elastic foundation. The resulting partial differential equation for the switch modeled as a beam is discritized via a Galerkin method into ordinary differential equations for modal amplitudes. The Galerkin method uses the linear un-damped mode shapes of the beam to approximate the solution. Both cantilever and fixed-fixed type switches are analyzed. Static equilibrium solutions as a function of the applied voltage are developed along with their stability. Static pull-in voltages, first time of switch closure, and voltage for lift-off are studied with the model.