Better flexibility and controllability have been introduced into distribution system with the development of new loads and resources. As a consequence, the connotations and tools for evaluating the planning solution need to be further enriched. This paper proposes a fast algorithm to quantify steady-state voltages and load profiles in distribution system by simulating the manipulation control process of controllable resources, taking the efficiency and ease of use into account. In this method, a complex distribution system is decoupled into several simple parts according to the ports of the DC interlink. Then, to achieve the qualified voltages and load profiles, the manipulation details of controllable resources are simulated following a certain control sequence in each part. Finally, the analysis results of each part are matched and filtered to obtain a complete evaluation. Five of the most commonly controllable resources are considered in this method. The effectiveness of the proposed method is demonstrated through a case study based on field data from an actual distribution system.