Abstract-Efficient torque control of induction motor drives in combination with resonant dc-link input filters can lead to a type of stability problem that is known as negative impedance instability. An often-proposed solution to this problem is the nonlinear system stabilizing controller (NSSC). Stability is usually analyzed under the simplifying assumption of perfect torque control. This indicates that the NSSC stabilizes the drive at any operating point. In this paper, however, we show power laboratory experiments where the NSSC stabilization fails. An improved framework for stability analysis and synthesis of stabilization, based on a linear feedback model of the drive, is therefore proposed. With this approach, effects of time delays can easily be included, and stability margins can be directly established from measurements. To solve the indicated problems with NSSC, a stabilization controller that considers the practical limitations of torque control is derived. In the design of the stabilization controller, the tradeoff between damping and acceptable torque control is also explicitly taken into account. The proposed stabilization scheme is implemented and evaluated on a hardware-in-the-loop simulator as well as in a power laboratory. The results show that the proposed method outperforms the NSSC method.