The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.The first step in viral entry is the stable attachment of the virion to the surface of a new target cell, a process that can be inefficient for many viruses (16,34,62,73). Cellular proteins that facilitate productive infection by increasing the efficiency of virus binding, but whose presence is not absolutely required for viral entry, are often referred to as attachment factors (4). Two of the most extensively studied attachment factors are the lectins DC-SIGN (CD209) (18, 29) and DC-SIGNR (L-SIGN) (CD209L) (7,67,78). Both are tetrameric type II transmembrane proteins containing calcium-dependent (C-type) carbohydrate recognition domains (CRDs) (55). DC-SIGN is highly expressed in monocyte-derived dendritic cells (MDDCs) in vitro (29) and at lower levels (86) in vivo in subsets of macrophages (45,53,79) and dendritic cells (23,29,40,80,86). DC-SIGNR is expressed on microvascular endothelial cells, especially in the liver sinusoids and lymph nodes (7,67,81). By facilitating virion attachment, DC-SIGN and DC-SIGNR [henceforth referred to collectively as DC-SIGN(R)] can greatly increase the susceptibility of permissive cells to infection by a wide array of enveloped viruses or allow nonpermissive cells to capture and transmit these viruses to target cells in trans (3,17,35,47,52,60,76,84).Viruses that bind to DC-SIGN(R) appear to do so via highmannose, N-linked glycans on their glycoproteins (44,48,51). This fact is readily explained by crystallographic studies demonstrating that mannose-rich oligosaccharides fit into elongated binding sites in the CRDs of DC-SIGN(R) (24). In addition to recognizing viral...