2021
DOI: 10.1002/bies.202100086
|View full text |Cite
|
Sign up to set email alerts
|

dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges

Abstract: Innovative loss-of-function techniques developed in recent years have made it much easier to target specific genomic loci at transcriptional levels. CRISPR interference (CRISPRi) has been proven to be the most effective and specific tool to knock down any gene of interest in mammalian cells. The catalytically deactivated Cas9 (dCas9) can be fused with transcription repressors to downregulate gene expression specified by sgRNA complementary to target genomic sequence. Although CRISPRi has huge potential for gen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 128 publications
(199 reference statements)
0
1
0
Order By: Relevance
“…CRISPRi knockdown can be tunable and reversible, making it more appropriate for some particular applications than CRISPR-del [19]. Nevertheless, the larger size of Cas9 protein fused to a repressing domain can impair its delivery to target cells and make the system less efficient [20]. Besides, CRISPRi is not suitable for targeting bidirectional promoters, as the repressive domain would induce the unspecific knockdown of all proximal TSSs [21,22], while CRISPR-del can be directed to target promoter regions with adjacent TSS with high specificity [23].…”
Section: Introductionmentioning
confidence: 99%
“…CRISPRi knockdown can be tunable and reversible, making it more appropriate for some particular applications than CRISPR-del [19]. Nevertheless, the larger size of Cas9 protein fused to a repressing domain can impair its delivery to target cells and make the system less efficient [20]. Besides, CRISPRi is not suitable for targeting bidirectional promoters, as the repressive domain would induce the unspecific knockdown of all proximal TSSs [21,22], while CRISPR-del can be directed to target promoter regions with adjacent TSS with high specificity [23].…”
Section: Introductionmentioning
confidence: 99%