The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a protooncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-ofproapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor.neurotrophin-3 | caspase-3 | genetic | epigenetic T he Trk tyrosine kinase receptors and their ligands, the neurotrophins, have been studied extensively for their role in nervous system development. However, TrkA was originally cloned as an oncogene from colon carcinoma tumors in which the TrkA kinase domain was fused to the tropomyosin gene in the extracellular domain (1). This discovery motivated a great number of studies, which showed that neurotrophins (NGF, BDNF, and NT-4/5, NT-3) and their respective Trk receptors (TrkA, TrkB, and TrkC), are all involved in various malignancies (for review, see ref.2). The initial (and still generally accepted) view is that Trks, like other tyrosine kinase receptors, are oncogenic receptors, and therefore pan-Trk kinase inhibitors are currently being tested in clinical trials (3-5). Somewhat surprisingly, however, it has turned out that, at least in tumors such as neuroblastoma and medulloblastoma, TrkA, TrkB, and TrkC behave very differently, despite their close homology. TrkA and TrkC expression is associated with a good prognosis, whereas TrkB is expressed in very aggressive tumors (for review; see ref.2). The fact that the high expression of a tyrosine kinase receptor known to activate prooncogenic pathways (like the MAPK and PI3K-AKT pathways) is associated with a better outcome is counter intuitive, and suggests the possibility that TrkA and TrkC, rather than functioning solely as oncogenes, may also, in at least some cases, act as tumor suppressors. Although this notion may be ostensibly paradoxical, two recent independent studies have lent support to it, by demonstrating that both TrkA and TrkC, but not TrkB, act as dependence receptors (6, 7).Dependence receptors, which also include DCC (Deleted in Colorectal Carcinoma), UNC5H, Patched, Ne...