.The road segmentation task has become increasingly important in fields such as urban planning, traffic management, and environmental monitoring. However, most existing deep learning-based methods suffer from issues such as poor temporal effectiveness and connectivity, making it a significant challenge to achieve high-precision and high-efficiency road segmentation. We propose a road segmentation model based on a detail-enhanced lightweight transformer. Through the connectivity enhancement module, the issue of spatial information loss is addressed, enhancing the modeling capability of the road network connectivity. The model incorporates a detail-enhancement strategy to capture the relationship between roads and the environment, enhancing the perception and expression of details while maintaining low computational complexity. Furthermore, the use of a lightweight multiple feature fusion module promotes information fusion from features at different scales while a maintaining lightweight design. Extensive experiments on two publicly available datasets demonstrate that our method achieves the best performance in terms of real-time effectiveness and accuracy.