Internet becomes unavoidable and it provides us with a wealth of information and allows us to keep in touch with the outside world. However, there can also be risks on the internet that is, for example, even a naive hacker can access information and easily learn to generate a large scale DDoS attack with the help of downloadable user-friendly attacking tools. Nowadays, this has made even small businesses in trouble. One of the extensive DDoS attacks was done on October 2016 which is called “Mirai botnet”. In that, the attackers send 30 million packets per second to attack the financial department, industries, home system, etc. were affected. In the future, the attackers may hit the hardest even as banks, government sectors, and corporate sectors, etc. On DDoS attack time, the attackers are sending a lot of malicious packets to the server/victims. So the attacker’s throughput is increased and legitimate user throughput is decreased on time of the attack. In this paper, a novel approach is proposed to detect the DDoS attacks using Chi-Square method which compares the normal packets and current packets statistics to discriminate whether the particular flow is DDoS or not. Further; it identifies the IP address of attacking source using entropy statistic. The proposed method can be used to control internet crimes. The experimental results show that the proposed method outperforms the existing approaches by detecting the DDoS attack and also by identifying the wrongdoer IP address. In addition, it takes minimum time to perform the above.