Deregulated inflammation is considered to be one of the hallmarks of cancer initiation and development regulation. Emerging evidence indicates that the inflammasome plays a central role in regulating immune cells and cytokines related to cancer. The inflammasome is a multimeric complex consisting of NOD-like receptors (NLRs) and responds to a variety of endogenous (damage-associated molecular patterns) and exogenous (pathogen-associated molecular patterns) stimuli. Several lines of evidence suggests that in cancer the inflammasome is positively associated with characteristics such as elevated levels of IL-1β and IL-18, activation of NF-κB signaling, enhanced mitochondrial oxidative stress, and activation of autophagic process. A number of NLRs, such as NLRP3 and NLRC4 are also highlighted in carcinogenesis and closely correlate to chemoresponse and prognosis. Although conflicting evidence suggested the duplex role of inflammasome in cancer development, the phenomenon might be attributed to NLRs difference, cell and tissue type, cancer stage, and specific experimental conditions. Given the promising role of inflammasome in mediating cancer development, precise elucidation of its signaling network and pathological significance may lead to novel therapeutic options for malignancy therapy and prevention.