2021
DOI: 10.1021/acs.jctc.1c00584
|View full text |Cite
|
Sign up to set email alerts
|

De Novo Simulation of Charge Transport through Organic Single-Carrier Devices

Abstract: In amorphous organic semiconductor devices, electrons and holes are transported through layers of small organic molecules or polymers. The overall performance of the device depends both on the materials and the device configuration. Measuring a single device configuration requires a large effort of synthesizing the molecules and fabricating the device, rendering the search for promising materials in the vast molecular space both non-trivial and time-consuming. This effort could be greatly reduced by computing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
8
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

4
1

Authors

Journals

citations
Cited by 5 publications
(10 citation statements)
references
References 45 publications
0
8
2
Order By: Relevance
“…As the systems which are generated in this way are too small to be used in the kMC transport model (Massé et al, 2014) we use a stochastic extension scheme (Baumeier et al, 2012;Symalla et al, 2016). This scheme has been used to investigate charge and energy transport in emissive layers (Symalla et al, 2020a;Symalla et al, 2020b), doped injection layers (Symalla et al, 2020a), single-carrier devices (Kaiser et al, 2021) and OLEDs (Symalla et al, 2018;Symalla et al, 2019) de novo.…”
Section: Introductionmentioning
confidence: 99%
“…As the systems which are generated in this way are too small to be used in the kMC transport model (Massé et al, 2014) we use a stochastic extension scheme (Baumeier et al, 2012;Symalla et al, 2016). This scheme has been used to investigate charge and energy transport in emissive layers (Symalla et al, 2020a;Symalla et al, 2020b), doped injection layers (Symalla et al, 2020a), single-carrier devices (Kaiser et al, 2021) and OLEDs (Symalla et al, 2018;Symalla et al, 2019) de novo.…”
Section: Introductionmentioning
confidence: 99%
“…We performed the simulations on systems represented by simple cubic latices ( Bässler, 1993 ; Pasveer et al, 2005 ) for each organic layer with a lattice constant was d = 1 nm ( Mesta et al, 2013 ). Electronic properties like the ionization potential (IP) of the host material, electron affinity (EA) of the dopants or energetic disorder were treated as parameters and could easily be replaced by data from first-principle calculations, as done in previous works ( Friederich et al, 2016 ; Kaiser et al, 2021 ). Charge carrier transport, charge injection (ejection) and doping activation with the kMC package LightForge (LF) ( Symalla et al, 2016 ).…”
Section: Methodsmentioning
confidence: 99%
“…The enormous number of potential materials and device architectures turns the development of novel materials and devices into a time- and resource-intensive task. In recent years, multiscale computational methods successfully predicted charge carrier mobility in pure materials ( Friederich et al, 2014 ; Massé et al, 2016 ; Kotadiya et al, 2018 ) and guest-host systems ( Symalla et al, 2016 ), current voltage characteristics ( Mesta et al, 2013 ; Kaiser et al, 2021 ) and photoluminescent quenching ( Symalla et al, 2020b ) thus gaining relevance for the organic electronics community to be used as a supporting tool in device development and optimization ( Andrienko, 2018 ; Friederich et al, 2019 ). Established simulation methods to model charge transport, charge injection (extraction) in OLEDs are drift-diffusion methods (DD) ( Rossi et al, 2020 ; Doan et al, 2019 ), macroscopic equivalent-circuit techniques ( Nowy et al, 2010 ), and microscopic methods like kinetic Monte Carlo (kMC) or master equation approaches (ME) ( Zojer, 2021 ).…”
Section: Introductionmentioning
confidence: 99%
“…Several works that investigated charge carrier mobilities in amorphous OSCs have extensively covered energetic disorder. Some of these works assumed a frozen structure approximation, which is equivalent to analyzing a single snapshot of a molecular dynamics (MD) trajectory. However, dynamic effects on energetic disorder have been explored in several studies, albeit in either crystalline or partially ordered systems.…”
Section: Introductionmentioning
confidence: 99%