2018
DOI: 10.1111/php.12856
|View full text |Cite
|
Sign up to set email alerts
|

Deactivation and Regeneration of NaTaO3 Photocatalyst in Cooperating Dehydrogenation Coupling of Isopropanol and Hydrogenation Coupling of Acetone Reaction System

Abstract: Photocatalyst activity is influenced by many factors, such as adsorption of by-products, runoff of surface hydroxyl groups and carriers. In this study, a simple and efficient photocatalyst regeneration method was developed. Results indicated that NaTaO photocatalyst lost its photoactivity after three cycles of reaction that involves coupling of isopropanol and hydrogenation coupling of acetone reaction system. Runoff of Na on the surface was the main reason for the deactivation of NaTaO photocatalyst. After hy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 22 publications
0
1
0
Order By: Relevance
“…Furthermore, it is possible to combine properties, such as ferroelectricity or piezoelectricity, with the photocatalytic effect to improve photocatalytic activity. The perovskite photocatalysts can be classified into the following categories: titanates, SrTiO 3 112–118 and BaTiO 3 119–123 ; tantalates, LiTaO 3 , 124 NaTaO 3 125–132 and KTaO 3 133–137 ; niobates, LiNbO 3 , 138,139 NaNbO 3 140–147 and KNbO 3 148–153 ; vanadates, AgVO 3 154–162 ; and ferrites, LaFeO 3 , 164–169 BiFeO 3 170–176 and GaFeO 3 177 . These compounds show great potential for application in visible light‐driven photoreactions.…”
Section: Classificationmentioning
confidence: 99%
“…Furthermore, it is possible to combine properties, such as ferroelectricity or piezoelectricity, with the photocatalytic effect to improve photocatalytic activity. The perovskite photocatalysts can be classified into the following categories: titanates, SrTiO 3 112–118 and BaTiO 3 119–123 ; tantalates, LiTaO 3 , 124 NaTaO 3 125–132 and KTaO 3 133–137 ; niobates, LiNbO 3 , 138,139 NaNbO 3 140–147 and KNbO 3 148–153 ; vanadates, AgVO 3 154–162 ; and ferrites, LaFeO 3 , 164–169 BiFeO 3 170–176 and GaFeO 3 177 . These compounds show great potential for application in visible light‐driven photoreactions.…”
Section: Classificationmentioning
confidence: 99%