ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pK a of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids.Physical organic chemistry is a discipline in which experimental and theoretical approaches are used to delineate reaction mechanisms, uncovering mother nature's chemical steps, physical phenomena and reactivity 1 . Many postulates, and sometimes heated debates, have been investigated and settled using the tools of this discipline. For example, the classic debate surrounding the norbornyl carbocation has only recently been settled with a low temperature (40 K) crystal structure 2 . Another is the controversy surrounding interpretation Reprints and permissions information is available at www.nature.com/reprints.