In order to achieve the reduction of voltage distortion in ac power supplies (ACPSs), this paper describes an implementation of synchronous-frame control for selected frequencies in the output voltage. The regulation of the fundamental output voltage, as well as that of some low-order harmonics, is achieved using a synchronous-frame controller for each selected frequency in addition to a conventional control. The conventional part conserves good dynamic performance under load changes, while rotating-frame controllers allow a slow, but very precise compensation of the residual errors within the assumption that the harmonics produced by distorting load are slowly varying. Moreover, motivated by a fixed-point implementation, a set of refinements and modifications of the original scheme is proposed, allowing a reduction of signal processing requirements and a new control algorithm structure less sensitive to quantization and rounding errors. This solution is particularly effective for high-power fully digitally controlled ACPSs, where the voltage loop bandwidth is usually not large enough to provide regulation at harmonic frequencies. The proposed control scheme has been implemented using a fixed-point single-chip digital signal processor (ADMC401 by Analog Devices). Experimental results on a 3-kVA three-phase converter prototype show the effectiveness of the proposed approach.