A novel finite-time convergent estimation technique is proposed for identifying the amplitude, frequency and phase of a biased sinusoidal signal. Resorting to Volterra integral operators with suitably designed kernels, the measured signal is processed yielding a set of auxiliary signals in which the influence of the unknown initial conditions is removed. A second-order sliding mode-based adaptation law-fed by the aforementioned auxiliary signals-is designed for finite-time estimation of the frequency, amplitude, and phase. The worst case behavior of the proposed algorithm in presence of the bounded additive disturbances is fully characterized by Input-to-State Stability arguments. The effectiveness of the estimation technique is evaluated and compared with other existing tools via extensive numerical simulations.