The prediction context of machine learning aims to discern the underlying patterns that dictate the characteristics to forecast the output. This prediction lacks precision when the input data is not accurate or precise. This study focuses on feature imputation through the application of the neutrosophic set theory. The primary concept involves substituting feature data, which may have accuracy and correctness issues, with neutrosophic variables considering the degrees of truth, indeterminacy, and falsity to produce more precise and resilient predictions. The proposed method was implemented in a specific case study, and the results are analyzed.