An investigation into a novel in-vivo PMMA (polymethyl methacrylate) plastic fiber-optic dosimeter for monitoring low doses of ionizing radiotherapy radiation in real time and for integrating measurements is presented. The fabricated optical fiber tip possessed an embedded structure. A scintillation material, terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb), capable of emitting visible light at around 545 nm which is ideal for transmission through the PMMA when exposed to ionizing radiation was embedded in the PMMA plastic fiber. The dose rate of incident ionizing radiation is measured by analyzing the signal intensity emitted from the scintillation material which propagates through the fiber to a distal MPPC (multi-pixel photon counter). The dosimeter exhibits good repeatability with an excellent linear relationship between the fiber-optic dosimeter output and the absorbed radiation dose with an outstanding isotropic response in its radial angular dependence. "Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range," Med. Phys. 34(6), 2220-2227 (2007). 7. T. Aoyama, S. Koyama, and C. Kawaura, "An in-phantom dosimetry system using pin silicon photodiode radiation sensors for measuring organ doses in x-ray CT and other diagnostic radiology," Med. Phys. 29(7), 1504-1510 (2002). 8. A. S. Beddar, T. R. Mackie, and F. H. Attix, "Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. physical characteristics and theoretical consideration," Phys. Med. Biol. 37(10), 1883-1900 (1992). 9. A. S. Beddar, T. R. Mackie, and F. H. Attix, "Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. properties and measurements," Phys. Med. Biol. 37(10), 1901-1913 (1992). 10. M. A. Clift, R. A. Sutton, and D. V. Webb, "Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams," Phys. Med. Biol. 45(5), 1165-1182 (2000).
#254911Received 2